Skip to main content
Log in

A computational comparative study of the repetitive DNA in the genus Quercus L

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

An overall picture comparing the repetitive components of the genomes of three Quercus species was obtained by genome skimming with Illumina sequence reads. Read sets of Q. lobata, Q. robur, and Q. suber species were subjected to hybrid clustering in order to assemble a repeatome of the Quercus genus and to annotate it. The repeatome was composed of 8573 clusters. The abundance of repeated sequences in the three species was assessed by mapping Illumina reads of each species onto the repeatome. The repetitive portion of the genome was similar among the three species. The most abundant repetitive sequences were long terminal repeat-retrotransposons. Copia elements were overrepresented when compared with Gypsy ones. The most abundant retrotransposon lineages were SIRE for the Copia superfamily and Ogre/TAT for the Gypsy superfamily. Some of the clusters belonging to these lineages showed different transpositional time profiles among the three species. Ribosomal DNAs accounted for 3.64–6.75% of the repetitive component. Satellite DNAs were much more abundant in Q. lobata (8.68% of the genome) than in the two other species. However, different satellite DNAs showed large variations in their abundances. Overall, the composition of the repetitive portion of the genome showed some differences among oak species, suggesting a possible role of repeats for Quercus species differentiation. In the cases of Q. lobata and Q. robur, both of which belong to the Quercus section of the Quercus genus, such differences may be related to the different geographical origins of the species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All genomic DNA raw Illumina sequences used in this work are available at the NCBI Sequence Read Archive under the accession numbers SRR3244044 (Quercus lobata), ERR1824219 (Q. robur), and SRR5820934 (Q. suber). The fasta file of the repeatome of Quercus, containing 8497 clusters generated by RepeatExplorer, is available as Supplementary material no. 2. Computational resources for using RepeatExplorer were provided by the ELIXIR-CZ project (LM2015047), part of the international ELIXIR infrastructure.

References

  • Ammiraju JS, Zuccolo A, Yu Y, Song X, Piegu P, Chevalier F, Walling JG, Ma J, Talag J, Brar DS, SanMiguel PJ, Jiang N, Jackson SA, Panaud O, Wing RA (2007) Evolutionary dynamics of an ancient retrotransposon family provides insights into evolution of genome size in the genus Oryza. Plant J 52:342–351

    Article  CAS  PubMed  Google Scholar 

  • Andrews S (2010) A quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/. Accessed 14 Dec 2019

  • Bacilieri R, Ducousso A, Petit RJ, Kremer A (1996) Mating system and asymmetric hybridization in a mixed stand of European oaks. Evolution 50:900–908

    Article  PubMed  Google Scholar 

  • Barghini E, Natali L, Cossu RM, Giordani T, Pindo M, Cattonaro F, Scalabrin S, Velasco R, Morgante M, Cavallini A (2014) The peculiar landscape of repetitive sequences in the olive (Olea europaea L.) genome. Genome Biol Evol 6:776–791

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barghini E, Natali L, Giordani T, Cossu RM, Scalabrin S, Cattonaro F, Šimková H, Vrána J, Doležel J, Morgante M, Cavallini A (2015a) LTR retrotransposon dynamics in the evolution of the olive (Olea europaea) genome. DNA Res 22:91–100

    Article  CAS  PubMed  Google Scholar 

  • Barghini E, Mascagni F, Natali L, Giordani T, Cavallini A (2015b) Analysis of the repetitive component and retrotransposon population in the genome of a marine angiosperm, Posidonia oceanica (L.) Delile. Mar Genomics 24:397–404

    Article  PubMed  Google Scholar 

  • Barghini E, Mascagni F, Natali L, Giordani T, Cavallini A (2017) Identification and characterisation of short interspersed nuclear elements in the olive tree (Olea europaea L.) genome. Mol Gen Genomics 292:53–61

    Article  CAS  Google Scholar 

  • Bedbrook JR, Jones J, O’Dell M, Thompson RD, Flavell RB (1980) A molecular description of telomeric heterochromatin in Secale species. Cell 19:545–560

    Article  CAS  PubMed  Google Scholar 

  • Biscotti MA, Olmo E, Heslop-Harrison JS (2015) Repetitive DNA in eukaryotic genomes. Chromosom Res 23:415–420

    Article  CAS  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buti M, Giordani T, Cattonaro F, Cossu RM, Pistelli L, Vukich M, Morgante M, Cavallini A, Natali L (2011) Temporal dynamics in the evolution of the sunflower genome as revealed by sequencing and annotation of three large genomic regions. Theor Appl Genet 123:779–791

    Article  CAS  PubMed  Google Scholar 

  • Buti M, Moretto M, Barghini E, Mascagni F, Natali L, Brilli M et al (2018) The genome sequence and transcriptome of Potentilla micrantha and their comparison to Fragaria vesca (the woodland strawberry). GigaScience 7:1–14

    Article  PubMed  CAS  Google Scholar 

  • Cossu RM, Buti M, Giordani T, Natali L, Cavallini A (2012) A computational study of the dynamics of LTR retrotransposons in the Populus trichocarpa genome. Tree Genet Genomes 8:61–75

    Article  Google Scholar 

  • Daghlian CP, Crepet WL (1983) Oak catkins, leaves and fruits from the Oligocene Catahoula Formation and their evolutionary significance. Am J Bot 70:639–649

    Article  Google Scholar 

  • Dodsworth S, Chase MW, Kelly LJ, Leitch IJ, Macas J, Novák P, Piednoël M, Weiss-Schneeweiss H, Leitch AR (2015) Genomic repeat abundances contain phylogenetic signal. Syst Biol 64:112–126

    Article  CAS  PubMed  Google Scholar 

  • Dumolin-Lapegue S, Demesure B, Fineschi S, Le Comte V, Petit RJ (1997) Phylogeographic structure of white oaks throughout the European continent. Genetics 146:1475–1487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dvořáčková M, Fojtová M, Fajkus J (2015) Chromatin dynamics of plant telomeres and ribosomal genes. Plant J 83:18–37

    Article  PubMed  CAS  Google Scholar 

  • Favre JM, Brown S (1996) A flow cytometric evaluation of the nuclear DNA content and GC percent in genomes of European oak species. Annales des Sciences Forestieres 53:915–917

    Article  Google Scholar 

  • Galindo-González L, Mhiri C, Deyholos MK, Grandbastien MA (2017) LTR retrotransposons in plants: engines of evolution. Gene 626:14–25

    Article  PubMed  CAS  Google Scholar 

  • Garrido-Ramos MA (2017) Satellite DNA: an evolving topic. Genes 8:230

    Article  PubMed Central  CAS  Google Scholar 

  • Gifford RJ, Blomberg J, Coffin JM, Fan H, Heidmann T, Mayer J et al (2018) Nomenclature for endogenous retrovirus (ERV) loci. Retrovirology 15:59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goubert C, Modolo L, Vieira C, Valiente Moro C, Mavingui P, Boulesteix M (2015) De novo assembly and annotation of the Asian tiger mosquito (Aedes albopictus) repeatome with dnaPipeTE from raw genomic reads and comparative analysis with the yellow fever mosquito (Aedes aegypti). Genome Biol Evol 7:1192–1205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawkins JS, Kim H, Nason JD, Wing RA, Wendel JF (2006) Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium. Genome Res 16:1252–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hipp AL, Eaton DAR, Cavender-Bares J, Nipper R, Manos PS (2013) Using phylogenomics to infer the evolutionary history of oaks. Int Oaks 24:61–71

    Google Scholar 

  • Howard DJ, Preszler RW, Williams J, Fenchel S, Boecklen WJ (1997) How discrete are oak species? Insights from a hybrid zone between Quercus grisea and Quercus gambelii. Evolution 51:747–755

    Article  PubMed  Google Scholar 

  • Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    Article  CAS  PubMed  Google Scholar 

  • Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J (2005) Repbase update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 110:462–467

    Article  CAS  PubMed  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Bennetzen JL (1999) Plant retrotransposons. Annu Rev Genet 33:479–532

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leitch AR, Leitch IJ (2012) Ecological and genetic factors linked to contrasting genome dynamics in seed plants. New Phytol 194:629–646

    Article  CAS  PubMed  Google Scholar 

  • Lermontova I, Sandmann M, Mascher M, Schmit AC, Chabouté ME (2015) Centromeric chromatin and its dynamics in plants. Plant J 83:4–17

    Article  CAS  PubMed  Google Scholar 

  • Llorens C, Futami R, Covelli L, Domínguez-Escribá L, Viu JM, Tamarit D, Aguilar-Rodríguez J, Vicente-Ripolles M, Fuster G, Bernet GP, Maumus F, Munoz-Pomer A, Sempere JM, Latorre A, Moya A (2011) The Gypsy database (GyDB) of mobile genetic elements: release 2.0. Nucleic Acids Res 39:D70–D74

    Article  CAS  PubMed  Google Scholar 

  • Macas J, Neumann P (2007) Ogre elements—a distinct group of plant Ty3/gypsy like retrotransposons. Gene 390:108–116

    Article  CAS  PubMed  Google Scholar 

  • Macas J, Neumann P, Navratilova A (2007) Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterisation using 454 sequencing and comparison to soybean and Medicago truncatula. BMC Genomics 8:427

    Article  PubMed  PubMed Central  Google Scholar 

  • Manos PS, Doyle JJ, Nixon KC (1999) Phylogeny, biogeography, and processes of molecular differentiation in Quercus subgenus Quercus (Fagaceae). Mol Phylogenet Evol 12:333–349

    Article  CAS  PubMed  Google Scholar 

  • Mascagni F, Barghini E, Giordani T, Rieseberg LH, Cavallini A, Natali L (2015) Repetitive DNA and plant domestication: variation in copy number and proximity to genes of LTR-retrotransposons among wild and cultivated sunflower (Helianthus annuus) genotypes. Genome Biol Evol 7:3368–3382

    Article  PubMed  PubMed Central  Google Scholar 

  • Mascagni F, Cavallini A, Giordani T, Natali L (2017a) Different histories of two highly variable LTR retrotransposons in sunflower species. Gene 634:5–14

    Article  CAS  PubMed  Google Scholar 

  • Mascagni F, Giordani T, Ceccarelli M, Cavallini A, Natali L (2017b) Genome-wide analysis of LTR retrotransposon diversity and its impact on the evolution of the genus Helianthus (L.). BMC Genomics 18:634

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mascagni F, Usai G, Natali L, Cavallini A, Giordani T (2018a) A comparison of methods for LTR-retrotransposon insertion time profiling in the Populus trichocarpa genome. Caryologia 71:85–92

    Article  Google Scholar 

  • Mascagni F, Vangelisti A, Giordani T, Cavallini A, Natali L (2018b) Specific LTR-retrotransposons show copy number variations between wild and cultivated sunflowers. Genes 9:433

    Article  PubMed Central  CAS  Google Scholar 

  • Mehrotra S, Goyal V (2014) Repetitive sequences in plant nuclear DNA: types, distribution, evolution and function. Genomics Proteomics Bioinf 12:164–171

    Article  Google Scholar 

  • Morgante M, Brunner S, Pea G, Fengler K, Zuccolo A, Rafalski A (2005) Gene duplication and exon shuffling by helitron-like transposons generate intraspecies diversity in maize. Nat Genet 37:997–1002

    Article  CAS  PubMed  Google Scholar 

  • Natali L, Cossu RM, Barghini E, Giordani T, Buti M, Mascagni F, Morgante M, Gill N, Kane NC, Rieseberg L, Cavallini A (2013) The repetitive component of the sunflower genome as revealed by different procedures for assembling next generation sequencing reads. BMC Genomics 14:686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Natali L, Cossu RM, Mascagni F, Giordani T, Cavallini A (2015) A survey of Gypsy and Copia LTR-retrotransposon superfamilies and lineages and their distinct dynamics in the Populus trichocarpa (L.) genome. Tree Genet Genomes 11:107

  • Neumann P, Navrátilová A, Koblížková A, Kejnovský E, Hřibová E, Hobza R, Widmer A, Doležel J, Macas J (2011) Plant centromeric retrotransposons: a structural and cytogenetic perspective. Mob DNA 2:4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neumann P, Novák P, Hoštáková N, Macas J (2019) Systematic survey of plant LTR retrotransposons elucidates phylogenetic relationships of their polyprotein domains and provides a reference for element classification. Mob DNA 10:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Nixon KC (1993) Infrageneric classification of Quercus (Fagaceae) and typification of sectional names. Ann Sci For Suppl 1(50):25s–34s

    Article  Google Scholar 

  • Novák P, Neumann P, Macas J (2010) Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinformatics 11:378

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Novák P, Neumann P, Pech J, Steinhaisl J, Macas J (2013) RepeatExplorer: a Galaxy based Web server for genome-wide characterization of eukaryotic repetitive elements from next generation sequence reads. Bioinformatics 29:792–793

    Article  PubMed  CAS  Google Scholar 

  • Piegu B, Guyot R, Picault N, Roulin A, Saniyal A, Kim H, Collura K, Brar DS, Jackson S, Wing RA, Panaud O (2006) Doubling genome size without polyploidization: dynamics of retrotransposition driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Res 16:1262–1269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinosio S, Giacomello S, Faivre-Rampant P, Taylor G, Jorge V, Le Paslier MC, Zaina G, Bastien C, Cattonaro F, Marroni F, Morgante M (2016) Characterization of the poplar pan-genome by genome-wide identification of structural variation. Mol Biol Evol 33:2706–2719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renny-Byfield S, Kovarik A, Kelly LJ, Macas J, Novak P, Chase MW, Nichols RA, Pancholi MR, Grandbastien MA, Leitch AR (2013) Diploidization and genome size change in allopolyploids is associated with differential dynamics of low- and high copy sequences. Plant J 74:829–839

    Article  CAS  PubMed  Google Scholar 

  • Rushton BS (1993) Natural hybridization within the genus Quercus L. Ann Sci For Suppl 1 (Paris) 50:73s–90s

    Article  Google Scholar 

  • Sabot F, Schulman AH (2006) Parasitism and the retrotransposon life cycle in plants: a hitchhiker’s guide to the genome. Heredity 97:381–388

    Article  CAS  PubMed  Google Scholar 

  • SanMiguel P, Tikhonov A, Jin YK, Motchoulskaia N, Zakharov D, Melake-Berhan A, Springer PS, Edwards KJ, Lee M, Avramova Z (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 274:765–768

    Article  CAS  PubMed  Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    Article  CAS  PubMed  Google Scholar 

  • Slotkin RK, Martienssen R (2007) Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8:272–285

    Article  CAS  PubMed  Google Scholar 

  • Sork VL, Fitz-Gibbon ST, Puiu D, Crepeau M, Gugger PF, Sherman R, Stevens K, Langley CH, Pellegrini M, Salzberg SL (2016) First draft assembly and annotation of the genome of a California endemic oak Quercus lobata Née (Fagaceae). G3: Genes, Genomes. Genetics 6(11):3485–3495

    CAS  Google Scholar 

  • Staton SE, Bakken BE, Blackman BK, Chapman MA, Kane NC, Tang S, Ungerer MC, Knapp SJ, Rieseberg LH, Burke JM (2012) The sunflower (Helianthus annuus L.) genome reflects a recent history of biased accumulation of transposable elements. Plant J 72:142–153

    Article  CAS  PubMed  Google Scholar 

  • Straub SCK, Parks M, Weitemier K, Fishbein M, Cronn RC, Liston A (2012) Navigating the tip of the genomic iceberg: next generation sequencing for plant systematics. Am J Bot 99:349–364

    Article  CAS  PubMed  Google Scholar 

  • Usai G, Mascagni F, Natali L, Giordani T, Cavallini A (2017) Comparative genome-wide analysis of repetitive DNA in the genus Populus L. Tree Genet Genomes 13:96

    Article  Google Scholar 

  • Vitte C, Fustier MA, Alix K, Tenaillon MI (2014) The bright side of transposons in crop evolution. Brief Funct Genom 13:276–295

    Article  Google Scholar 

  • Von-Sternberg R, Shapiro JA (2005) How repeated retroelements format genome function. Cytogenet Genome Res 110:108–116

    Article  CAS  PubMed  Google Scholar 

  • Wang G, He Q, Macas J, Novák P, Neumann P, Meng D, Zhao H, Guo N, Han S, Zong M, Jin W, Liu F (2017) Karyotypes and distribution of tandem repeat sequences in Brassica nigra determined by fluorescence in situ hybridization. Cytogenet Genome Res 152:158–165

    Article  CAS  PubMed  Google Scholar 

  • Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982

    Article  CAS  PubMed  Google Scholar 

  • Wright DA, Voytas DF (2002) Athila4 of Arabidopsis and Calypso of soybean define a lineage of endogenous plant retroviruses. Genome Res 12:122–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woo TH, Hong TH, Kim SS, Chung WH, Kang HJ, Kim CB, Seo JM (2007) Repeatome: a database for repeat element comparative analysis in human and chimpanzee. Genomics & Informatics 5:179–187

    Google Scholar 

  • Zhou Z (1993) The fossil history of Quercus. Acta Bot Yunnanica 15:21–33

    Google Scholar 

  • Zoldos V, Papes D, Brown SC, Panaud O, Åiljak-Yakovlev S (1998) Genome size and base composition of seven Quercus species: inter- and intra-population variation. Genome 41:162–168

    Article  CAS  Google Scholar 

Download references

Funding

This research work was supported by Department of Agriculture, Food and Environment, University of Pisa, Italy, project Plantomics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia Natali.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by J. Wright

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

Perl scripts used in this study (DOC 24 kb)

ESM 2

Fasta file of the repeatome of Quercus, containing 8497 clusters generated by RepeatExplorer (version 2) (FASTA 6245 kb)

ESM 3

Annotation and number of mapped reads in the assembled Quercus repeatome (XLSX 2308 kb)

ESM 4

Satellite DNAs identified by RepeatExplorer/TAREAN. For each satellite, the corresponding graph, the consensus sequences, and the satellite probability according to RepeatExplorer/TAREAN are reported (PDF 120 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mascagni, F., Vangelisti, A., Giordani, T. et al. A computational comparative study of the repetitive DNA in the genus Quercus L. Tree Genetics & Genomes 16, 11 (2020). https://doi.org/10.1007/s11295-019-1401-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-019-1401-2

Keywords

Navigation